Search results for " crystal structure"
showing 10 items of 129 documents
Optical properties of wurtzite GaN/AlN quantum dots grown on non-polar planes: the effect of stacking faults in the reduction of the internal electri…
2016
The optical emission of non-polar GaN/AlN quantum dots has been investigated. The presence of stacking faults inside these quantum dots is evidenced in the dependence of the photoluminescence with temperature and excitation power. A theoretical model for the electronic structure and optical properties of non-polar quantum dots, taking into account their realistic shapes, is presented which predicts a substantial reduction of the internal electric field but a persisting quantum confined Stark effect, comparable to that of polar GaN/AlN quantum dots. Modeling the effect of a 3 monolayer stacking fault inside the quantum dot, which acts as zinc-blende inclusion into the wurtzite matrix, result…
Atomistic modeling of crystal structure of Ca1.67SiHx
2015
The atomic structure of calcium-silicate-hydrate (C-1.67-S-H-x) has been investigated by theoretical methods in order to establish a better insight into its structure. Three models for C-S-H all derived from tobermorite are proposed and a large number of structures were created within each model by making a random distribution of silica oligomers of different size within each structure. These structures were subjected to structural relaxation by geometry optimization and molecular dynamics steps. That resulted in a set of energies within each model. Despite an energy distribution between individual structures within each model, significant energy differences are observed between the three m…
Effect of thermal annealing on the luminescence of defective ZnO nanoparticles synthesized by pulsed laser ablation in water
2016
This work concerns ZnO nanoparticles (NPs), with sizes of tens of nm, produced by ablation with a pulsed Nd:YAG laser of a Zn plate in H2O. TEM images evidence the formation of nanoparticles with sizes of tens of nm. Moreover, HRTEM images and Raman spectra show that the distance between the crystalline planes and the vibrational modes are consistent with ZnO nanocrystal in wurtzite structure. Their optical properties are characterized by two emission bands both excited above the energy gap (3.4 eV): the first at 3.3 eV is associated with excitons recombination, the second at 2.2 eV is proposed to originate from a singly ionized oxygen vacancy. The green emission is independent of water pH,…
Raman measurements on GaN thin films for PV - purposes
2012
Raman scattering (RS) is a very important experimental tool to characterize the optical modes and another elementary excitations of materials. Among other issues it can determine for example the degree of crystalline quality and point defects like local modes. Therefore GaN - thin films and related compounds for photovoltaic purposes and as processed by several systems have been measured by this technique. The films were grown by Molecular Beam Epitaxy (MBE), Close Spaced Vapor Transport (CSVT) and Laser Ablation (LA) with the use of optimal growth parameters and substrates. Gallium nitride crystallizes in the wurtzite structure with 4 atoms in the unit cell and presents 7 allowed Raman mod…
Enhanced optical properties of Cd–Mg-co-doped ZnO nanoparticles induced by low crystal structure distortion
2020
Abstract The growth of CdxMg0.125-xZn0.875O nanoparticles with yellow-orange luminescence is achieved up to 2.5 at. % Cd via a modified sol–gel process. X-ray diffraction analysis confirmed that all the nanoparticles have the hexagonal wurtzite structure. It is found that Cd doping has a considerable effect on the crystal size, microstrain, band gap, and photoluminescence of the Mg0·125Zn0·875O structure, originating from a preferred crystallographic orientation along the (101) plane of the wurtzite structure. The shift and broadening of the E2(high) mode observed in the Raman spectra due to growth-induced strain corroborates the small distortion observed in the X-ray diffraction data. The …
How is the inner circadian clock controlled by interactive clock proteins?
2015
AbstractMost internationally travelled researchers will have encountered jetlag. If not, working odd hours makes most of us feel somehow dysfunctional. How can all this be linked to circadian rhythms and circadian clocks? In this review, we define circadian clocks, their composition and underlying molecular mechanisms. We describe and discuss recent crystal structures of Drosophila and mammalian core clock components and the enormous impact they had on the understanding of circadian clock mechanisms. Finally, we highlight the importance of circadian clocks for the daily regulation of human/mammalian physiology and show connections to overall fitness, health and disease.
Crystal structure of SrMn2(Si2O7)(OH)2 H2O, a new mineral of the lawsonite type
1992
Crystal with the composition SrMn 2 [Si 2 O 7 ](OH) 2 .H 2 O were found in a sugilite, serandite-pectolite rich sample from the Wessels Mine, Kalahari, South Africa. The crystal structure of the nex compound with space group Cmcm, a = 6.255(1), b = 9.034(2), c = 13.397(2) A, Z = 4 was determined from X-ray single-crystal data (R = 0.048). The structure is of the lawsonite type where Al is completely replaced by Mn 3+ and Ca by Sr. [Mn 3+ O 6 ] octahedra forming edge-sharing chains parallel to a exhibit a Jahn-Teller distortion with four short and two long Mn 3+ -O distances. Sr is in eight-fold coordination and H 2 O is disordered on a split position. Together with orientite, macfallite, ru…
Influence of F centres on structural and electronic properties of AlN single-walled nanotubes
2007
We analyse the influence of uncharged N vacancies (neutral F centres), created either under conditions of AlN nanotube growth or by its soft irradiation, on the atomic and electronic structure. Periodic one-dimensional (1D) density functional theory (DFT) calculations on models of defective single-walled nanotubes (SW NTs) allow us to analyse how NT chirality and concentration of F centres change their properties compared to the corresponding defect-free nanotubes. We have simulated reconstruction around periodically repeated F centres on 1 nm AlN SW NTs with armchair- and zigzag-type chiralities. To achieve the limit of an isolated vacancy for both chiralities, we have considered different…
LDA+Uand tight-binding electronic structure of InN nanowires
2013
In this paper we employ a combined ab initio and tight-binding approach to obtain the electronic and optical properties of hydrogenated Indium nitride InN nanowires. We first discuss InN band structure for the wurtzite structure calculated at the LDA+U level and use this information to extract the parameters needed for an empirical tight-binging implementation. These parameters are then employed to calculate the electronic and optical properties of InN nanowires in a diameter range that would not be affordable by ab initio techniques. The reliability of the large nanowires results is assessed by explicitly comparing the electronic structure of a small diameter wire studied both at LDA+U and…
High-pressure optical absorption in InN: Electron density dependence in the wurtzite phase and reevaluation of the indirect band gap of rocksalt InN
2012
We report on high-pressure optical absorption measurements on InN epilayers with a range of free-electron concentrations (5×1017–1.6×1019 cm−3) to investigate the effect of free carriers on the pressure coefficient of the optical band gap of wurtzite InN. With increasing carrier concentration, we observe a decrease of the absolute value of the optical band gap pressure coefficient of wurtzite InN. An analysis of our data based on the k·p model allows us to obtain a pressure coefficient of 32 meV/GPa for the fundamental band gap of intrinsic wurtzite InN. Optical absorption measurements on a 5.7-μm-thick InN epilayer at pressures above the wurtzite-to-rocksalt transition have allowed us to o…